ANOVA	
ANOVA Peter Tea	ANOVA: Analysis of variance
	Peter Tea University of Ottawa July 2017
	uOttawa

AN		
AN	U	vн

Statistics

ANOVA

Peter Tea

- Extract sensible information
- Investigate trends or patterns
- Find associations between variables

A N I	0	
AN	υ	VP

Statistics

ANOVA

Peter Tea

- Extract sensible information
- Investigate trends or patterns
- Find associations between variables

Health Data:

Daily Exercise	Plasma Cholesterol (mmol/L)
A) $60 + minutes$	
B) 31 - 60 minutes	
C) 15 - 30 minutes	
D) < 15 minutes	

NOVA	Analysis	of	Variance
------	----------	----	----------

Peter Tea

Are the groups (A, B, C, D) actually different from one another in terms of the measured plasma cholesterol levels?

anova Ana

Analysis of Variance

ANOVA

Peter Tea

Are the groups (A, B, C, D) actually different from one another in terms of the measured plasma cholesterol levels?

$$H_0: \ \mu_A = \mu_B = \mu_C = \mu_D$$
 (1)

$$H_1: \mu_i \neq \mu_j$$
 for at least one pair (i, j) (2)

A NI	0	11	١
AN	υ	V۶	٩

ANOVA: How it Works

ANOVA

Peter Tea

1 Split the data into groups corresponding to the different levels of the variable *Exercise*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2 Analyse the variances among groups and compare to variances within groups.

ANOVA	Analysis of Variance
ANOVA Peter Tea	1. Split the data into groups corresponding to the different levels of the variable <i>Exercise</i> .

ANOVA Analysis of Variance

ANOVA

Peter Tea

1. Split the data into groups corresponding to the different levels of the variable *Exercise*.

Analysis of Variance

ANOVA

Peter Tea

1. Split the data into groups corresponding to the different levels of the variable *Exercise*.

Analysis of Variance

ANOVA

Peter Tea

1. Split the data into groups corresponding to the different levels of the variable *Exercise*.

Analysis of Variance

ANOVA

Peter Tea

1. Split the data into groups corresponding to the different levels of the variable *Exercise*.

Analysis of Variance

ANOVA

Peter Tea

1. Split the data into groups corresponding to the different levels of the variable *Exercise*.

Sac

ANOVA Analysis of Variance

ANOVA

Peter Tea

2. Analyse the variances among groups and compare to variances within groups.

$$S^2 = \sum \frac{(X - \bar{X})^2}{N - 1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Analysis of Variance

ANOVA

Peter Tea

2. Analyse the variances among groups and compare to variances within groups.

$$S^2 = \sum \frac{(X - \bar{X})^2}{N - 1}$$

ANOVA Analysis of Variance

ANOVA

Peter Tea

Data Modelling:

$$y_{ij} = \mu + \tau_i + \epsilon_{ij} \begin{cases} i = 1, 2, 3, 4\\ j = 1, 2, 3, ..., n \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

ANOVA Analysis of Variance ANOVA Data Modelling:

$$y_{ij} = \mu + \tau_i + \epsilon_{ij} \begin{cases} i = 1, 2, 3, 4 \\ j = 1, 2, 3, ..., n \end{cases}$$

æ

Analysis of Variance

ANOVA

Peter Tea

Data Modelling:

$$y_{ij} = \mu + \tau_i + \epsilon_{ij} \begin{cases} i = 1, 2, 3, 4 \\ j = 1, 2, 3, ..., n \end{cases}$$

- *y_{ij}* represents the ijth observation
- μ represents the overall mean (i.e. the mean pooled across all levels)
- τ_i is a unique parameter to each group level and is referred to as the *treatment effect*. τ_i represents the deviation from the overall mean resulting from the ith group level.
- ϵ_{ij} is the random error of the experiment. The random error represents other sources of variability (eg. variability due to measurement errors or due to background noise.)

Analysis of Variance

ANOVA

Peter Tea

Compare variances among groups to variances within groups with the F-Test:

$$F_0 = \frac{\frac{SS_{Levels}}{a-1}}{\frac{SS_E}{N-a}} = \frac{MS_{levels}}{MS_E} = \frac{\text{Variation among groups}}{\text{Variation within groups}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Analysis of Variance

ANOVA

Peter Tea

Compare variances among groups to variances within groups with the F-Test:

ANOVA

Peter Tea

```
> setwd("C:/Users/Peter/Documents/Summer Research/
Topic 1 R")
> data <-read.csv("heartdata.csv", header = TRUE,</pre>
 sep = ",")
> model.plasma <- aov(plasma.ch~ exercise,</pre>
data = new.data) #Set up the One-Way ANOVA
> summary(model.plasma)
               Df Sum Sq Mean Sq F value Pr(>F)
             3
                      86 28.723 27.33 <2e-16 ***
exercise
Residuals 11730 12329 1.051
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
```


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problems?

ANOVA

Peter Tea

Assumption: The errors are normally and independently distributed random variables

$$\epsilon_{ij} \sim N(0, \sigma^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problems?

ANOVA

Peter Tea

Assumption: The errors are normally and independently distributed random variables

$$\epsilon_{ij} \sim N(0, \sigma^2)$$

ANOVA	Problems?
ANOVA	
	$H_0: \mu_A = \mu_B = \mu_C = \mu_D \tag{3}$
	$H_1: \ \mu_i eq \mu_j$ for at least one pair (i,j) (4)

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

ANOVA	Multiple Comparisons
ANOVA Peter Tea	$\begin{array}{lll} A \leftrightarrow B & B \leftrightarrow C & C \leftrightarrow D \\ A \leftrightarrow C & B \leftrightarrow D \\ A \leftrightarrow D \end{array}$
	Table: All pairwise comparisons
	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Type 1 error rate (α): Pr(Falsely rejecting $H_0 \mid H_0$ is true) If $\alpha = 0.05$ then:

 $Pr(\text{not rejecting } H_0|H_0 \text{ is true}) = 1 - 0.05$

=0.95

Multiple Comparisons

ANOVA

Peter Tea

```
Type 1 error rate (\alpha): Pr(Falsely rejecting H_0 \mid H_0 is true)
```

If $\alpha = 0.05$ then:

$$Pr(\text{not rejecting } H_0 | H_0 \text{ is true}) = 1 - 0.05$$
$$= 0.95$$

However, there are 6 total unique comparisons that can be made on the same data.

The probability of obtaining the correct decision in *all* comparisons made is:

$$(1 - \alpha)^6 = (1 - 0.05)^6$$

= 0.74

The type I error rate is inflated to:

1 - 0.74 = 0.26